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Recently two new integrals were defined, on [0, o) and (0, 1], respec-
tively (see [1, 2].). They are the simple integral and the dominated
integral. Each integral is defined by “one limit,” which is somewhat unusual
for an “improper” integral. When either of these two integrals is defined, it
agrees with the improper Riemann integral of the function on [0, o) or
(0, 1], respectively, which must then exist. Since the class of improperly
Riemann integrable functions on [0, o) or (0, 1] is larger than the class of
simply or dominantly integrable functions, respectively, it is of interest to
see how and when one can change an improperly Riemann integrable
function F(x) into either a simply or dominantly integrable function
F(f(1)) f'(¢) via a change of variable x= f(t). We treat this question
below.

DerINITIONS 1 (From [1]). [If ¢ is a positive number, a set of real num-
bers is called “s-separated” when every two numbers in the set differ by ¢ or
more.

If fis a complex function on [0, o0) and {x¢, x|, X;,...} is a finite or
infinite, strictly increasing, sequence of nonnegative numbers, the (finite or
infinite) quantity

Z Lf(x;) — flx;- 1)

is called “the variation of f on the sequence {xg, x(,..}.” If § is a
(nonempty) set of nonnegative real numbers with no finite limit point, and
S* the sequence consisting of the elements of S in their natural order, then
the “variation of f on S” is just the variation of f on S*.
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BOUNDED COARSE VARIATION 15

For a complex function f on [0, c0) and ¢>0, the “e-variation of f”
(denoted V.(f)) is the supremum of the variations of f on all ¢-separated
sets of nonnegative real numbers. (Clearly to define V,(f), it suffices to
consider only finite e-separated sets.)

A complex function f on [0, c0) is said to be of “bounded coarse
variation” (BCV) if it has a finite e-variation for every ¢ > 0.

THEOREM 1. Let F be a complex function on [0, o0), Riemann integrable
on every [0, M], 0 <M < co. Then there exists a continuously differentiable
real function [ from [0, c0) onto [0, o0), with f'>0 on [0, o©), such that
F(f(t)) f'(¢t) is of bounded coarse variation (by f'(0) we mean a right-hand
derivative).

Remark. The proof which we shall give is constructive. For many
functions F, at least one such f has a relatively simple form (see
Theorem 4).

A partition /7 of an interval [0,b], O0<b < 0, is a sequence 0 =35,<
§;< " <8,=b (m>1). The mesh of II is defined to be max, ¢,
(8,41 —$;) and is denoted by |/7].

DerFINITION 2 (From [1]). A complex function f on [0, o) is called
“simply integrable” (over [0, c0)) if there is a number 7 such that: For
every ¢ >0 there are positive numbers B= B(g) and A4 = A4(¢) such that if
b> B, Il is a partition of [0, »] with |II| <4 and X is a Riemann sum for
/. based on 7T, then |2 — ]| <e.

In other words, f is simply integrable if the Riemann sums associated
with partitions I7 of {0, b] approach a unique (finite) limit as long as
b— oo and 11| - 0 simultaneously.

THEOREM 2. Let F, f be as in Theorem 1 and suppose also that the
improper Riemann integral j{;o F(t) dt converges. Then G(t)y=F(f(1)) f'(1) is
simply integrable.

DerFiNiTION 3 (From [2]). Let H be a complex function on (0,1]. A
dominated integral of H is a complex number I(H) having the following

property:
For each &> 0 there exist 0 and ¥, 0<d <1, 0 <y <1, such that

IH)= Y H) 1 )| <o (1)
i=1

whenever 0<fo<ty < <t,=1, to<y, 4, <1;,<t;, and £;_t;7'>
1-46, j=1,2,.,n

640/44/1-2



16 CHARLES F. OSGOOD

The existence of a dominated integral for a complex function H on (0, 1]
(H being “dominantly integrable”) implies that H is properly Riemann
integrable on [¢ 1] for each ¢ in (0,1) and that [ H(r)di=
lim, o, ! H(r)dr exists, is finite, and equals /(H). As with the simple
integral, the dominated integral is defined by a “one limit” procedure and
its existence implies, see [3], that many other procedures can be validly
used to numerically approximate | H(r) dr.

THEOREM 3. Suppose that H is a complex function on (0, 1] which is
Riemann integrable on (¢, 1] for each ¢ in (0, 1), and that {§ |H(t)| dt =
lim, _, 4, fi |H(t)| dt < co. Then there is a continuously differentiable function
h from (0, 1] onto (0, 1], with k" >0 on (0, 1], such that H(h(t)) h'(¢) is
dominantly integrable.!

THEOREM 4. Let F be a complex function on [0, ) and let K> 1 and
o >0 be constants such that, for n=0, 1, 2,...,

(1) the total variation of F on {n,n+2]< K(n+1)* and
(i) supo< <o [F(1) < K(n+1)%
Then (1+ K 't)Y3+2) _1 can serve as f of Theorem 1.

2

DerINITION 4. If f is a bounded complex function on some [a, b] we
denote by w( f, a, b) the oscillation of f on [a, b], i.e., the supremum of the
set of all | f(¢,) — f(7,)] with a<t, <1, <b. Given a complex function f(¢)
defined and bounded on each closed subinterval of (0, 1], and given a
sequence 0 <ty<t, < -+ <t,=1, let OS(f, t,,..., t,,) denote the oscillation
sum

n

Yowlhit o )=t ).
j=1
Proofs of Theorems 1 and 4. Since F is Riemann integrable on each
[0, M], 0<M < o, F is bounded on each such interval so that F(x)=
SUPg < < x 1F()] <00, 0< X < 00,
Let (6(n))®_, be a sequence of positive numbers so that any oscillation
sum for Fon [n, n+2] with mesh <(n)is <(n+1)"% n=0,1,2,..
We next observe that there exists a function ¢ with the following proper-
ties: ¢ is a positive, strictly decreasing, continuous function on [0, ),

Yh'(1) is a left-hand derivative.
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p(0)<1; lim,_ , o(x)=0; for n=0,1,., ¢(m)<d(n); and on each
(n,n+1), ¢ is differentiable and |¢'|<((n+1)> E(n+1))~' (here
0~ '= +o).

For example, for n=1, 2,..., ¢(x) can be taken to the linear on [n—1, n)
with @(0)=min{1,5(0), (F(1))"'} and o¢(n)=min{d(n), ien—1),
((n+1)>F(n+1))~'}. Notice that if n<x<n+1, |¢'(x)=¢(n)—
o(n+1)< ()< ((n+1)? F(n+1))~'. Under the hypotheses of Theorem
4, we can set 6(n)=(2K(n+1)**?)"'and ¢(x)= ((a+3) K(x+1)*T3)~ 1,
We notice that |@'(x)| <K Yx+1)"@+*I<(n+ 1) 2K (n+1)7% if
n<x<n+1,n=01,2,...

Since lim,_ , @(x)=0, lim,_ [&(e(z))"'di=cc. On [0, ), let
g(x)={& (o(r))~" dr and let f(x) be defined by g( f(x)) = x. Clearly

f(g(x))=(g'(x))""=o(x) (2)

if x=0(f'(0) and g’'(0) are right-hand derivatives).

Notice that, under the hypotheses of Theorem 4, g(x)=K(x+1)***—K
and f(1)=(1+ K~ '1)/B+¥ 1.

Consider sums of the form

X FCf(x) f10e) = FOf - ) f (0l (3)
j=2

where 0< x; <x,< " <xy<o and x;—x;_, >3, j=2,3,., N>2 If we
can uniformly bound all sums (3), then F(f(x))f'(x) will have been
shown to be of bounded ¢-variation for ¢ = 4. By Theorem 1 of [4] this will
suffice to show that F( f(x)) f'(x) is of bounded ¢-variation for each ¢> 0.
Clearly we may also require above that x;—x, <1, for j=2,3,., N.
Now

F(f(x) f'(x) = F(f(x;21)) f'(%; )
=[F(f(x) = FOf O N1 f7(x) + FOf (e DU () — (x5 20):
We shall proceed to bound both

FAUACTINY) RVALCH Eob M CTAY | (4)

I ™M=

j=2

and

M=

|F(f(x;)) = F(f (x-S (x))- (5)

2

I

J

Setting y; = f(x;), 1 <j< N, we have
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_Z LFCFO - D) = (% 2))

IF(y, D Cg(y)—f (gl y;— )

F(y,_l le(y)—o(y;_1)l

(recall (2)). For some éj, Vi-1<&;<y;, 2<j<N, by the mean value
theorem,

Yi= Vi1 = (xj—xj—l)fl( g(&j))= (xj—
<eE)<o(0)< L

A consequence of the mean value theorem is that, if u is a real function,
on some [a,b] (—ow <a<b< ) and differentiable on (a, b), then

1/ (6) - fla)l < (b—a)

xjfl) Co(éj)

sup |f'(2)].

te(ab)
If u is continuous on [a, ] and only piecewise differentiable on (a, b)
and if we interpret sup,. 44 [f'(¢)| as the sup over those ¢ for which f'(¢)

exists, then the above inequality continues to hold.
Therefore

(yi— Dl e(y)—e(y;- 1)l

)

IF(y;, il ey —o(y,— )l

vi-1e[k—1k)

)

vi—1e[k—Lk)

|<p(y_,~)—<p(y,1)|> Fik)

sup o' (1)) F(k)

k—l<t<k+1

<2 Y k<o
k=1
Now we consider (5). Label the points y, = f(x;) lying in [m—1, m+ 1),
for j=1,2,.,N,m=1,2,., if any, as 1, ,, where 7,,, <7y, < -
k(m) = 1. Recalling (2), we can bound (5) by

< rK(m),ma

[F(Th v 1m) — F(Tk,m)| O(Ti s l,m)
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(an empty sum is 0). Let m>1, K(m)> 1. If 1 <k <k + 1< K(m), then for
some ék,m, Tk,m < ék,m < Tk+ 1,m» one haS (rk +1m Tk,m )( g(Tk-+— l,m) -

&Tm)) =L 8(Em)) = 0(Erm)> 0(T4 1 1) Since each x;—x;_; >4, we
see that

K(m)—1

Z [F(te . l,m)_ F(Tk,m)[ O(T s tm)

k=1
K(m)—1

<2 Z lF(TkH,m)"F(fk.m)f(Tk+1,m—'f/<,m)~
k=1

If 1<k<k+1<K(m), let O, denote the oscillation of F on
[Tk.m’ Tr+ l,m]- Then

K(m)—1

Z ‘F(Tk+l,m)_F(Tk,m)' (rk+1,m"rk,m)

k=1
K(m)—1

< Z OtemlTic v L= Tiem)-
k=1

In the last sum, each v, , ~ 7 ,<max,¢;<py;,— y;,-1)<1. Thus for
m=1,,., XK=V 0, (T s 1m— Trm) can be regarded as a subsum of an
oscillation sum for F on [m—1,m+1] with mesh <1. Since
max,c; px;—x;,_)<1, we have, for k=1,2,., K(m)—1, 1,,,,—
Tm=( 8Tk 1 1) = &(Tim)) P(Eim) < P(Em) <3(m—1). It follows by the
choice of d(m—1), that K™ =1 O (T4 4 1m— Tim) <m 2. This proves
Theorems 1 and 4.

3

Proof of Theorem?2. By Theorem 3 of [1], G is simply integrable since
it is improperly Riemann integrable over [0, o} and of bounded coarse
variation.

Proof of Theorem 3. F(t)=H((t+1)"')(t+1)7% 0<t< oo, satisfies
the hypothesis of Theorem 1. Thus there exists f as in Theorem 1 such that
G(t)=F(f(1)) f'(t), and a fortiori |G(¢)| is of bounded coarse variation, as
clearly [& |G(1)] dt < co. By Theorem 3 of [1], |G| is simply integrable.
Now G is Riemann integrable on each [0, M], 0 <M < o0, and thus it is
“absolutely simply integrable” ({2, Definition 3]). By Theorem 5 of [2],
G(—loge)t~' is dominantly integrable. Set A(z)=(1+f(—logt))~},
0 < t< 1. The function satisfies the conclusion of Theorem 3.
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